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Trembr: Exploring Road Networks for Trajectory

Representation Learning

TAO-YANG FU and WANG-CHIEN LEE, The Pennsylvania State University, USA

In this article, we propose a novel representation learning framework, namely TRajectory EMBedding via

Road networks (Trembr), to learn trajectory embeddings (low-dimensional feature vectors) for use in a variety

of trajectory applications. The novelty of Trembr lies in (1) the design of a recurrent neural network–(RNN)

based encoder–decoder model, namely Traj2Vec, that encodes spatial and temporal properties inherent in

trajectories into trajectory embeddings by exploiting the underlying road networks to constrain the learning

process in accordance with the matched road segments obtained using road network matching techniques

(e.g., Barefoot [24, 27]), and (2) the design of a neural network–based model, namely Road2Vec, to learn road

segment embeddings in road networks that captures various relationships amongst road segments in prepara-

tion for trajectory representation learning. In addition tomodel design, several unique technical issues raising

in Trembr, including data preparation in Road2Vec, the road segment relevance-aware loss, and the network

topology constraint in Traj2Vec, are examined. To validate our ideas, we learn trajectory embeddings using

multiple large-scale real-world trajectory datasets and use them in three tasks, including trajectory similarity

measure, travel time prediction, and destination prediction. Empirical results show that Trembr soundly out-

performs the state-of-the-art trajectory representation learning models, trajectory2vec and t2vec, by at least

one order ofmagnitude in terms ofmean rank in trajectory similaritymeasure, 23.3% to 41.7% in terms ofmean

absolute error (MAE) in travel time prediction, and 39.6% to 52.4% in terms of MAE in destination prediction.
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1 INTRODUCTION

With the rapid growth of GPS-enabled devices and the tremendous demands of location-aware ap-
plications, enormous amounts of trajectory data are being generated at an unprecedented speed. A
trajectory, typically represented as a sequence of spatio-temporal points to describe the movement
of a mobile user over time, can be used for various kinds of prediction tasks, e.g., travel time es-
timation, destination prediction, and trajectory outlier detection [23, 28, 40]. Moreover, trajectory
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Fig. 1. An example of top three similar trajectories.

data are essential for deriving trajectory similarity measures and exploratory trajectory mining
tasks, such as similar trajectory search and trajectory clustering [20, 21]. To achieve good perfor-
mance in these tasks, a proper representation of trajectories that captures the moving behaviors of
those mobile users is much needed, as it may serve as input features to various machine learning
or data mining algorithms. Typical approaches for feature engineering usually involve domain ex-
perts to manually extract discriminative features that capture inherent characteristics of interested
objects for use in specific prediction tasks. These approaches, heavily relying on prior knowledge
and experiences of domain experts, are, however, time consuming and cost expensive. Moreover,
those specially designed features may not be applicable for other tasks. These issues have inspired
emerging research interests in trajectory representation learning in recent years [18, 44].
The goal of trajectory representation learning is to automatically capture the moving behaviors

of mobile users embedded in the trajectories and encode the information in forms of general-
purpose low-dimensional feature vectors, called trajectory embeddings, which can be used for
various applications.1 This setting is similar to that of other representation learning research,
including word embedding learning, e.g., Word2Vec [25], and network embedding learning,
e.g., DeepWalk [31], where the learned embeddings are used for various applications, including
document classification, opinion mining in natural language processing, node classification, link
prediction in network analytics, and so on. Generally speaking, two spatio-temporally similar
trajectories would have embeddings closely located in the latent feature space. Thus, trajectory
embeddings serve well to measure trajectory similarity (e.g., by their Euclidean distance in the
latent feature space) and as input features for various prediction and mining tasks on trajectory
data, such as the aforementioned travel time estimation and destination prediction. As a result,
it is beneficial to have general-purpose, precomputed trajectory embeddings for those tasks, as
the time and cost spent on the labor-intensive feature engineering effort could be significantly
reduced. Figure 1 shows the feasibility and effectiveness of using trajectory embeddings generated
in this work to measure trajectory similarity in trajectory search. Given a query trajectory (in red),
the top three most similar trajectories (in terms of the Euclidean distance between their trajectory
embeddings) are returned. We can see that the three results are very similar with the query.
To learn trajectory embeddings, it is natural to consider recurrent neural network– (RNN) based

encoder–decoders, e.g., RNN autoencoder and seq2seq [5, 37], which have received great success in
modeling sequence data in natural language processing [29] and in image/video processing [35]. In
these applications, an RNN-based encoder–decoder encodes an input sequence, e.g., a textual doc-
ument, into a low-dimensional latent vector that in turn is decoded back to the original sequence
to embed the inherent properties of the sequence into a latent vector. However, simply applying

1In this work, we use the terms “embeddings,” “latent feature vectors,” and “representations” interchangeably.
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Fig. 2. Trajectories on road network.

the existing RNN-based encoder–decoders on raw trajectory data for trajectory representation
learning is impractical. First, raw trajectory data typically suffer from low and non-uniform sam-
pling rates and noisy sample points [45]. Existing RNN-based encoder–decoders, not designed to
handle these issues, are not able to capture the real moving path underlying a trajectory (i.e., the
exact path taken by a mobile user) into trajectory embeddings. Second, trajectories inherently con-
tain significant spatial and temporal information, but the optimization functions of existing RNN-
based encoder–decoders designed for natural language processing or image/video processing do
not consider the spatial and temporal properties amongst trajectories. Therefore, those RNN-based
encoder–decoders may not truly capture the moving behaviors of mobile users. Third, the move-
ment of a mobile user is physically constrained by factors such as the topology of an underlying
road network. However, it is proven that RNN models hardly learn the topology information well
automatically [43] and thus fail to optimize the learning of trajectory embeddings.
To address the aforementioned issues, in this article, we propose to encode both the spatial

and temporal properties inherent in trajectories into embeddings and incorporate underlying road
networks to facilitate and constrain the learning process. A road network is described as a directed
graph consisting of intersections as nodes and road segments as edges. With a road network, we
assume that the movement of a mobile user, such as a vehicle, is constrained by the topological
structure of the road network. Therefore, a trajectory can be seen as describing a moving path
on the road network. Different from a typical trajectory represented as a sequence of raw spatio-
temporal sample points on roads, we first transform a trajectory as a sequence of road segments
coupled with corresponding travel time, called Spatio-Temporal Sequence (ST-Seq), by road network
matching techniques (e.g., Barefoot [24, 27]), which map the sample points of a trajectory onto the
road network. The ST-Seq, capturing both the underlying moving path and the temporal aspect
of the movement, allows the impact of noisy and missing sample points caused by low and non-
uniform sampling rates be suppressed. With the ST-Seqs, a new RNN-based encoder–decoder,
called Traj2Vec, is designed for learning the embeddings of trajectories. Specifically, the proposed
Traj2Vec takes an ST-Seq as the input to encode as well as the target to decode. By encoding
and decoding both road segments and their corresponding travel times of an ST-Seq jointly, this
multi-task learning process of Traj2Vec captures the spatial and temporal behaviors of trajectories.
Moreover, Traj2Vec incorporates the topology of the road network into the model to constraint
the decoding to guide the learning process.
For the road segments in ST-Seqs, we argue that they are not independent from each other

but relevant in some ways due to various relationships, e.g., the same road types and fre-
quent co-occurrence in trajectories. Simply using unique IDs to represent road segments is
not able to provide the informative relationships mentioned above. For example, as shown in
Figure 2, consider a road network consisting of several road segments belonging to three roads,
hiдhway = {e1, e2, e3}, local1 = {e4, e5}, and local2 = {e6, e7}, where three trajectories pass though
them. Among these road segments, while e1, e2, and e4 are physically connected and thus relevant,
e2 and e4 are more relevant to each other than e1 and e2 from the aspect of user driving behaviors,
because more trajectories go though both e2 and e4 than e1 and e2. However, from the aspect of
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Fig. 3. Overview of the Trembr framework.

road type, e1 and e2 are more relevant than e2 and e4, because e1 and e2 both belong to hiдhway and
thus have the same road type. To exploit the relevance among road segments, we propose a novel
road segment representation learning model, namely Road segment to Vector (Road2Vec), to learn
road segment embeddings for use in Traj2Vec, by exploring the above-mentioned relationships
between road segments.
Based on the above ideas, we propose a framework, namely TRajectory EMBedding via Road

networks (Trembr), for trajectory representation learning. As shown in Figure 3, Trembr performs
the following tasks: (1) trajectory to road network mapping: mapping each raw trajectory onto the
road network as a sequence of (road segment, travel time) pairs, called ST-Seq, to address the
issues of low and non-uniform sampling, and noisy sample points in raw trajectories; (2) road
segment representation learning: Road2Vec captures two relationships amongst road segments, i.e.,
frequent co-occurrence in trajectories and having the same road type, to generate road segment
embeddings; and (3) trajectory representation learning: Traj2Vec encodes each transformed ST-Seq
(with road segment ID replaced by embeddings) as a trajectory embedding, that captures inherent
spatial and temporal properties of trajectories and the underlying road network, for use in various
trajectory mining applications. To the best of our knowledge, this is the first attempt to seamlessly
exploit both moving behaviors of mobile users and road networks for trajectory representation
learning.
There are only a few prior studies on trajectory representation learning [18, 44]. Although these

prior works all claim that their approaches are able to capture the moving behaviors in trajecto-
ries by their proposed RNN-based autoencoder models, they fail to capture both the spatial and
temporal properties of trajectories, and miss the topological constraints of the underlying road
network. Among them, by defining several manual-crafted feature functions to aggregate sample
points and applying the seq2seq model to learn trajectory embeddings, trajectory2vec [44] does
not consider the geometric locations of the sample points in trajectories and thus fail to capture the
spatial property of trajectories. However, by partitioning the space into cells, t2vec [18] transforms
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a trajectory as a sequence of cells and then designs an RNN-based model to encode a transformed
trajectory into a latent vector. Without considering the time information of the sample points in
trajectories, it fails to capture the temporal properties of trajectories. Moreover, these previous
works do not consider the underlying road networks even though the trajectories are capturing
movement of mobile road users. Finally, both works only focus on one specific application and
thus do not meet the ultimate goal of representation learning, i.e., generally supporting various
applications.
The main contributions of this study are threefold:

• Novel ideas for trajectory representation learning by exploiting themoving behav-

iors of mobile road users and properties of road networks. This article analyzes the
challenges of trajectory representation learning problem and proposes innovative ideas to
encode the inherent spatial and temporal properties of trajectories into trajectory embed-
dings by exploiting the underlying road networks to overcome these challenges.

• A new representation learning framework for trajectories. We propose a three-phase
framework, Trembr, to learn representations of trajectories. The novelty of this framework
lies in the design of a neural network–based model, Road2Vec, to learn road segment repre-
sentations that captures various relationships amongst road segments and the design of a
novel RNN-based encoder–decoder model, Traj2Vec, for trajectory representation learning
to capture the spatial and temporal properties inherent in trajectories while constraining
the learning process upon the topological structure of the road network.

• Comprehensive empirical evaluation using real-world data. We evaluate Trembr by
conducting a comprehensive evaluation with three different tasks, trajectory similarity
measure, travel time prediction, and destination prediction, using two real-world trajec-
tory datasets. Compared with baselines (seq2seq) and two state-of-the-art representation
learning models (trajectory2vec and t2vec), empirical result shows that Trembr soundly
outperforms all existing models by at least one order of magnitude in terms of mean rank
in trajectory similarity measure, 23.3% to 41.7% and 39.6% to 52.4% in terms of MAE in travel
time prediction and destination prediction, respectively.

In the rest of this article, we first review the related work in Section 2, and provide research
background, problem definition and analysis in Section 3. We present the proposed Trembr frame-
work in Section 4 and show experiment results in Section 5. Finally, we conclude the article in
Section 6 and discuss future research directions.

2 RELATEDWORK

We briefly review the related work on trajectory representation learning, network representation
learning, and road network matching of trajectories.

2.1 Representation Learning of Trajectories

The goal of representation learning is to automatically transform raw data into general-purpose
low-dimensional latent vectors that effectively serve as input features to machine learning and
data mining algorithms for various applications [2]. In the past several years, research interests in
neural network–based representation learning algorithms have grown rapidly in various domains,
including text processing [16, 25, 30], network analytics [31, 39], computer vision [33, 34], and
so on. For sequence data, e.g., text, videos and audios, RNN-based encoder–decoders, e.g., RNN
autoencoder, sequence to sequence (seq2seq), skip-thought vectors, and attention models [5, 7, 15,
19, 37], have been developed to capture the sequential order in those data.
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Research on representation learning of trajectories, which can be considered as a kind of se-
quence data has been reported in the literature only recently. As mentioned previously, it is nat-
ural to consider RNN-based encoder–decoders to learn representations for sequence data. How-
ever, traditional RNN-based encoder–decoders are designed for textual data in natural language
processing, where a textual document seldom has noises (e.g., typos) and does not have time gaps
between words. Therefore, simply applying existing RNN-based encoder–decoders for trajectory
representation learning is impractical, because existing RNN-based encoder–decoders are not de-
signed to handle the non-uniform and low sampling rate and noisy sample points in raw trajectory
data. Moreover, they fail to consider the spatial and temporal properties inherent in trajectories
and ignore the physical constraints imposed by road networks upon behaviors of mobile road
users, e.g., vehicles.
To the best knowledge of the authors, there are only two prior studies on representation learning

of trajectories [18, 44]. Although these prior works all claim successes in capturing the moving be-
haviors in trajectories, they do not handle well the various issues discussed earlier. Between them,
trajectory2vec [44] employs a sliding window over trajectories to extract several manual-crafted
moving features from the raw sample points in the window, e.g., time interval, moving distance,
moving speed and rate of turns. Then it simply applies the seq2seq model to encode a trajectory
(in form of a sequence of the moving features) into a latent vector. However, without considering
the geographic locations of sample points in trajectories, trajectory2vec fails to capture the spatial
properties of trajectories. As a result, trajectories may have similar representations even if they
are generated by different routes taken by different mobile users. Adopting a different approach to
handle the issues of noisy sample points and low sampling rate, t2vec [18] partitions the space in
grid to transform a trajectory as a sequence of grid cells. Then, it designs an RNN-based encoder–
decoder with a spatial-aware loss function to encode a trajectory (in form of a sequence of cells)
into a latent vector. The spatial-aware loss function penalizes the misses in prediction during de-
coding by considering the geographic distance between cells. However, without considering the
time information of the sample points in trajectories, t2vec fails to capture the temporal properties
of trajectories. For both of these existing works, selecting a proper size of the sliding window or
the cells is critical. Too large a size incorporates irrelevant points into embeddings, while too small
a size leads the learning process to suffer the data sparsity issue. Moreover, both works only con-
sider one application in their evaluations, without demonstrating the generality and applicability
of their trajectory embeddings for multiple applications. Finally, these previous works do not con-
sider road maps in their representation learning, even though most of the trajectory datasets are
capturing the movement of mobile users on roads.

2.2 Representation Learning in Networks

Recently, research on representation learning has been extended to network data, which aims
to embed a network into a low-dimensional space and represent each node or edge as a low-
dimensional feature vector for further applications. However, instead of the road networks targeted
in this work, most existing works focus only on learning node or edge vectors in general networks,
such as homogeneous information networks [12, 31, 39], heterogeneous information networks [8,
9], attributed network [14, 17], and so on. Simply applying the existing network representation
learning methods for road network representation learning is impractical. First of all, they do
not consider the spatial properties of road networks, e.g., the lengths of road segments. Second,
network representation learning methods usually apply random walks to sample training data,
which fails to capture the usermovement behaviors in road networks, i.e., the trajectories ofmobile
users. Finally, network representation learning methods usually do not consider to incorporate
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various of relationships among nodes or edges, such as the same road types and frequent co-
occurrence in trajectories.

2.3 Road Network Matching

Raw trajectories, typically suffering from low and non-uniform sampling rates and noisy sample
points, may not perfectlymatch the underlying road networks themobile users traveling on. To ad-
dress these issues, existing noise filtering methods fall into several major categories, such as mean
filtering, heuristics-based outlier detection, road network matching, and so on [45]. Among them,
road network matching, i.e., aligning the sample points of a trajectory onto the road network to
transform the trajectory as a sequence of road segments, is an essential step in data preprocessing
for location-based services [22], which not only helps to filter noisy data but also discover the exact
path of the trajectory on the road network. Several road networkmatching works have been devel-
oped over the years [1, 3, 11, 22, 27, 42]. These works can be classified as geometric or topological
techniques [26]. Geometric techniques utilize the geometry of a trajectory and the road network
for matching, e.g., point-to-curve matching [42]. They only consider the shapes of the road seg-
ments in the road network regardless of their topological connectivity. Therefore, these techniques
fail to achieve good matching accuracy for trajectories that suffer low and non-uniform sampling
rates and noisy sample points, because the geometry of trajectories got distorted. However, topo-
logical techniques, e.g., References [1, 3, 11, 22, 27] leverage the connectivity of road segments
for road network matching. Among those, Hidden Markov Model–based approaches [11, 22, 27]
provide probabilistic frameworks to address the noises in the input trajectory with remarkable
accuracy. In this article, we adopt Barefoot, a state-of-the-art Hidden Markov Model–based model
proposed by Newson and Krumm [24, 27], for road network matching. Barefoot aims to find the
most likely the sequence of road segments in a road network represented by a trajectory. More
specifically, in Barefoot, individual road segment are modeled as the states of the HMM model,
and the goal is to match each GPS sample point to the proper road segments while exploiting the
connectivity of the road network to find the most like transitions between road segments.

3 PRELIMINARIES

In this section, we first introduce the notions of trajectory, road network, and ST-Seq, present
the general framework of RNN-based encoder–decoders, and then define the targeted research
problem and discuss the challenges.

3.1 Trajectory, Road Network, and ST-Seq

We first define trajectories and road networks.

Definition 1 (Trajectory). A trajectory T is a sequence of spatio-temporal sample points gener-
ated from themovement of a mobile user. A sample pointp contains a location (x ,y) (i.e., longitude
and latitude) and a timestamp t .

Figure 4 shows a part of a trajectoryT1 extracted from a real dataset of taxi trajectories collected
in the city of Proto [4]. As shown, many sample points are not exactly located on the roads due to
noises or low sampling rate.

Definition 2 (Road Network). A road network is a directed graphG = (V ,E,Ψ), whereV is a set
of nodes (i.e., intersections); E ⊆ V ×V is a set of directed edges that denote road segments; and
Ψ : E → R is a type mapping function of edges. Each edge e ∈ E corresponds to a road segment
from a start node e .s = v ∈ V to an end node e .e = v ′ ∈ V , where v ′ � v . Moreover, an edge e ∈ E
belongs to a particular edge type in R, i.e., Ψ(e ) ∈ R.
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Fig. 4. A trajectory. Fig. 5. An ST-Seq.

Fig. 6. The RNN-based encoder–decoder model.

Definition 3 (Spatial-Temporal Sequence (ST-Seq)). An ST-Seq p = {(r1, t1), . . . , (r |p |, t |p | )} is a se-
quence of road segments and travel times, where (ri , ti ) denotes the ith road segment and the
corresponding travel time.

Figure 5 shows an example of the road network corresponding to the road map shown in
Figure 4. Here the trajectory T1 in Figure 4 is expressed as an ST-Seq p1 = {(e1, 5sec ), (e2, 2sec ),
(e3, 5sec ), . . . , (e8, 10sec )} (as illustrated by dotted arrows).

3.2 RNN-based Encoder–Decoders

We briefly present the general framework of RNN-based encoder–decoders (as illustrated in Fig-
ure 6). Consider a pair of sequences (x = {x1, . . . ,x |x | },y = {y1, . . . ,y |y | }), where xi and yi denote
the ith token of x and y (e.g., a word in a document or a signal in a speech), and |x | and |y | denote
the lengths of x and y. An RNN-based encoder–decoder model, e.g., RNN autoencoder [5] or the
sequence to sequence model [37], aims to encode x into a low-dimensional latent representation
h0, which is in turn decoded back to y by maximizing the conditional probability P (y |x ). As such,
h0 preserves the sequential information in x .

The conditional probability P (y |x ) is modeled below.

P (y |x ) = P (y1, . . . ,y |y | |x ) = P (y1 |x )
|y |∏
i=2

P (yi |y1:i−1,x ),

where y1:i−1 denotes the subsequence y1,y2, . . . ,yi−1. Since the encoder encodes the sequential
information in x into h0, the decoder derives P (y1 |x ) and P (yi |y1:i−1,x ) as follows:

P (y1 |x ) = P (y1 |h0)
P (yi |y1:i−1,x ) = P (yi |y1:i−1,h0).

The decoder sequentially computes P (yi |y1:i−1,h0) at each position i ofy. Specifically, at position
i , the decoder transforms y1:i−1 and h0 into the hidden state hi , which preserves the sequential
information of x and y1:i−1 and then predicts yi by hi . hi is computed from the previous token
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yi−1 and the output of previous position hi−1 by hi = f (yi−1,hi−1), where f (·, ·) is the activation
function of an RNN cell, e.g., long short-term memory (LSTM) [13] or gated recurrent unit (GRU)
[6]. After computing hi at position i in y, P (yi |y1:i−1,h0) can be derived as follows:

P (yi = u |y1:i−1,h0) = P (yi = u |hi ) = exp (Wu · hi )∑
v ∈N exp (Wv · hi ) ,

whereW is the projection matrix that projects hi from the hidden state space into the vocabulary
space,Wu denotes the uth row ofW , and N is the vocabulary.

3.3 Problem Statement

This work aims to learn low-dimensional embeddings for trajectories in a given trajectory dataset
by exploiting the underlying road network. In the following, we formally state our research goal.

Definition 4 (Trajectory Representation Learning with Road Networks). Given a trajectory dataset
D and an underlying road network G, develop an end-to-end framework that learns a function f
: D → Rd to project each trajectory T ∈ D as a vector in a d-dimensional space Rd in support of
a variety of trajectory mining tasks.

Ideally, the learned embedding of a trajectory shall reflect the inherent characteristics and un-
derlying route of the trajectory on the road network. Meanwhile, the similarity of two trajectories
based on the learned embeddings shall be robust to non-uniform, low sampling rates and noisy
sample points.

3.4 Our Ideas and Faced Challenges

In this article, we propose a framework, Trembr, to tackle the problem of trajectory representation
learning by exploring underlying road networks. Based on Trembr, we first match each trajectory
onto the road network and transform a trajectory as an ST-Seq aiming to suppress the impact of
noisy and missing sample points caused by low and non-uniform sampling rates. Next, we propose
a novel neural network model, Road2Vec, to learn representations of road segments by capturing
explicit and implicit relationships between road segments for further trajectory representation
learning. Finally, we propose a new RNN-based encoder–decoder, Traj2Vec, to learn representa-
tions of trajectories by capturing the spatial and temporal properties inherent in trajectories. To
implement the Trembr framework, we face new challenges: (1) Road segment representation learn-
ing. A well-designed neural network model is critical for effective and efficient learning to cap-
ture multiple relationships between road segments, such as frequent co-occurrence in trajectories
and the same road types. Moreover, how to define the co-occurrence relationship between road
segments? How to prepare training data for the different types of relationships between road seg-
ments? (2) Trajectory representation learning. A well-designed RNN-based auto-encoder is critical
for effective and efficient learning to encode both the spatial and temporal properties of trajectories
into embeddings. How to incorporate the topology of the underlying road network to constraint
the learning? What is the proper loss function for model learning? These are research questions
arising in the design of Trembr.

4 THE TREMBR FRAMEWORK

As introduced earlier in Figure 3, the Trembr framework consists of three phases: Road network

matching, Road segment representation learning, and Trajectory representation learning. In the sec-
tion, we detail our design in each phase.
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Fig. 7. The Road2Vec model.

4.1 Road Network Matching

Raw trajectory data typically suffers from low and non-uniform sampling rates and noisy sample
points, due to sensor noise or poor positioning signals. As existing RNN models are not designed
to handle these issues, it is not a good idea to directly use them for trajectory representation
learning. Moreover, they are not able to capture the characteristics and constraints of physical
paths underlying the trajectories. Therefore, we preprocess the trajectories to handle low and
non-uniform sampling rates and filter noises before starting the learning process.
As mentioned, we argue that road network matching methods, projecting a trajectory onto a

road network and transform it as a sequence of road segments, may not only help to filter noisy
data but also discover the exact path of the trajectory on the road network (i.e., handle the low and
non-uniform sample rate issue), which along with the topological structure of the road network
are beneficial to trajectory representation learning. Thus, in Trembr, we adopt Barefoot, a Hidden
MarkovModel–based model [24, 27], for road network matching. More specifically, after matching
a trajectory on a road network, each GPS sample point is re-located on a road segment. We simply
assume that the moving speed between two consecutive sample points (there may be multiple
road segments between them) is constant. Based on this assumption, a trajectory dataset D is
transformed into an ST-seq dataset Dp as defined in Section 3.1.

4.2 Road Segment Representation Learning

Conventionally, road segments are identified by unique IDs. As argued previously, road segments
are not independent from each other but relevant in terms of some relationships, such as the same
road types (an explicit relationship in a road network) and frequent co-occurrence in trajectories
(an implicit relationship in moving behaviors). Simply using a road segment’s own attributes, e.g.,
unique IDs or geo-locations of its source/destination nodes, to represent the road segment fails to
capture those informative relationships. To address this issue, we propose Road2Vec, a new neural
network model designed by exploring the aforementioned relationships, to learn road segment
embeddings as part of ST-Seqs for use in trajectory representation learning. Specifically, Road2Vec
learns an embedding for each road segment by jointly predicting whether two road segments co-
occur in the same trajectory and whether two road segments belong to the same road type. In the
following, we first present the Road2Vec model and the optimization process, and then introduce
the training data preparation for Road2Vec and some related issues.

4.2.1 The Road2Vec Model. As shown in Figure 7, the Road2Vec model is a multi-task binary

classifier that takes a pair of road segments x and y (encoded as one-hot vectors) as the inputs
to predict the aforementioned two relationships, correspondingly measured by (a) the probability
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Pc (x ,y) for x and y to co-occur in a trajectory, and (b) the probability Pt (x ,y) for x and y to have
the same road type. The two joint probabilities are derived below.

Pc (x ,y) = σ (Ux ·Uy ) Pt (x ,y) = σ (Ux ·Uy ),

where σ (x ) = 1
1+e−x is the Sigmoid function, U is a matrix consisting of all road segments’ em-

beddings, andUx is the xth row ofU , denoting the embedding for road segment x . In the training
process, if road segments x and y are observed in the training data to satisfy one of the targeted
prediction tasks,Ux andUy are moved close in the latent space. Otherwise, they are moved away.

4.2.2 Optimization Objective. To train Road2Vec, a training set Dr containing training data in
the form of d =

〈
x ,y,Lc (x ,y),Lt (x ,y)

〉
is extracted from an ST-Seq dataset Dp (the preparation of

training data to be detailed later). HereLc (x ,y) andLt (x ,y), two boolean values, indicatewhetherx
andy co-occur in a trajectory andwhether x andy belong to the same road type, respectively.With
Dr , Road2Vec is trained by the backpropagation training algorithm in conjunction with stochastic
gradient descent. It goes backwards to adjust the weights inU for each entry in Dr , attempting to
maximize the objectiveO , which is the combination ofOcd (x ,y) andOtd (x ,y) of for each entry in
Dr . Here Ocd (x ,y) and Otd (x ,y) quantify how Road2Vec correctly predicts Lc (x ,y) and Lt (x ,y)
for a data entry d , respectively. In specific, given a training data entry d =

〈
x ,y,Lc (x ,y),Lt (x ,y)

〉
,

Ocd (x ,y) aims tomaximize Pc (x ,y), when Lc (x ,y) is 1; andminimize Pc (x ,y), otherwise. However,
Otd (x ,y) aims to maximize Pt (x ,y), when Lt (x ,y) is 1, and minimize Pt (x ,y), otherwise. To ease
the computation in the optimization process, we maximize logOcd (x ,y) and logOtd (x ,y) rather
than directly maximize Ocd (x ,y) and Otd (x ,y), which are derived as follows:

Ocd (x ,y) =

{
Pc (x ,y), if Lc (x ,y) = 1
1 − Pc (x ,y), if Lc (x ,y) = 0

logOcd (x ,y) = Lc (x ,y) log Pc (x ,y) + [1 − Lc (x ,y)] log[1 − Pc (x ,y)]

Otd (x ,y) =

{
Pt (x ,y), if Lt (x ,y) = 1
1 − Pt (x ,y), if Lt (x ,y) = 0

logOtd (x ,y) = Lt (x ,y) log Pt (x ,y) + [1 − Lt (x ,y)] log[1 − Pt (x ,y)].
The overall objective function O is defined as follows:

O =
∑
d ∈Dr

{
α logOcd (x ,y) + (1 − α ) logOtd (x ,y)

}
,

where α is for weighing Ocd (x ,y) and Otd (x ,y).
We then apply the stochastic gradient descent algorithm to maximize the objective function O .

Specifically, for each training data entry, d =
〈
x ,y,Lc (x ,y),Lt (x ,y)

〉
, it goes backwards to adjust

the weights of road segments x and y in U based on the gradients, as shown:

Ux := Ux +
αd logOcd (x ,y) + (1 − α )d logOtd (x ,y)

dUx

Uy := Uy +
αd logOcd (x ,y) + (1 − α )d logOtd (x ,y)

dUy
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Fig. 8. Different sliding window sizes.

4.2.3 Training Data Preparation. To prepare training data for Road2Vec, we use the ST-
Seq dataset Dp processed in Phase 1 to generate the training data in the form of d = 〈x ,y,
Lc (x ,y),Lt (x ,y)〉. Given an ST-Seq, we apply a sliding window with a certain window size
(to be discussed later) over the ST-Seq to extract the co-occurrence relationship of road seg-
ments in the ST-Seq. There are various ways to define the window size, e.g., within-k-
hop, moving distance, or moving time. Consider an example ST-Seq p = {(e1, 5 sec ), (e2, 5 sec ),
(e3, 10 sec ), (e4, 20 sec ), (e5, 10 sec )}, as shown in Figure 8. Suppose we use a sliding window of
within-3-hop window size and 1-hop sliding step. Three windows of road segments are extracted
from p, i.e., {e1, e2, e3}, {e2, e3, e4}, and {e3, e4, e5} as shown in Figure 8 (the “3-hop” rows). For each
pairs of road segments x andy within a window, we create a positive training entry reflecting their
co-occurrence relationship in a trajectory. We also check whether x and y have the same type to
generate training data entries for the same-type relationship. For example, in the first window
{e1, e2, e3}, we generate positive training data entries 〈e1, e2, 1, same (e1, e2)〉, 〈e1, e3, 1, same (e1, e3)〉,
and 〈e2, e3, 1, same (e2, e3)〉, and so on, where same (x ,y) is filled by checking whether x and y
have the same road type. Notice that, within-k-hop, without considering the moving distance
and the moving time in the ST-Seq, may potentially group irrelevant road segments together or
miss relevant road segments. For example, in Figure 8, e3 and e5 are distant but grouped by a
within-3-hop window. As a result, we also explore two alternative definitions of window size,
moving distance and moving time, which reflect the lengths of road segments and the moving
behavior of mobile users, respectively. Figure 8 also shows the road segment groups by using
50-m moving distance (with a 25-m sliding step) and using 20-s moving time (with 10-s slid-
ing step) as the window sizes as shown in Figure 8 (the “50m” and “20 sec” rows). While gen-
erating positive samples by sliding window over trajectories, we also prepare negative data en-
tries following the ideas of negative sampling [25]. For each sampled positive entry, we generate
negative training data entries by randomly replacing one of the two values with either x ′ or y ′,
where x ′ and y ′ are randomly selected road segments.

4.3 Trajectory Representation Learning

We argue that existing RNN-based encoder–decoders fail to capture the spatial and temporal prop-
erties inherent in trajectories and ignore the physical constraints imposed by road networks upon
user movements. To address these issues, Traj2Vec takes an ST-Seq (with road segment IDs re-
placed by Road2Vec embeddings) as input to generate a low-dimensional trajectory embedding,
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Fig. 9. The Traj2Vec model.

by capturing both the spatial and temporal properties in the trajectory. Further, we embed the
road network topological constraint in the decoding process and propose a novel road segment

relevance-aware loss function for model learning. In the following, we first present the details of
the Traj2Vec model and the loss function, and then discuss issues arising in Traj2Vec.

4.3.1 The Traj2Vec Model. As shown in Figure 9, the Traj2Vec model is a multi-task RNN-
based encoder–decoder that takes an ST-Seq p = {(r1, t1), . . . , (r |p |, t |p | )} as the input. The pro-
posed model first sequentially encodes the input p into a low-dimensional latent vector h0 (i.e., the
trajectory embedding) and in turn decodes the embedding h0 back to p by jointly maximizing the
probability for a road segment ri to be traveled following the partial path p1:i−1 and minimizing
the error in predicting the travel time ti at each state i to capture both the spatial and temporal
properties in the trajectory. More specifically, given an ST-Seq p, during the encoding process, the
model sequentially takes pairs (ri , ti ) of p (i = 1, ..|p |) as the input for their corresponding states.
At the ith state, ri is replaced by its embedding (learned in Phase 2) and is concatenated with ti
(a positive float-point value) to serve as the input vector. After encoding, Traj2Vec takes h0, the
output of the |p |th state in the encoding process, as the input to the decoder that sequentially de-
codes the intermediately generated latent vector hi−1 (i = 1..|p |) back to p by predicting each road
segment ri and its corresponding travel time ti . Here we apply two-layer LSTM cell in the model
for both encoding and decoding. As mentioned previously, the road segment transitions in a tra-
jectory are strictly constrained by the topology of the road network. However, it is proved that
RNN models hardly learn the topology information well automatically [43]. Therefore, we embed
the topological constraint in the decoding process by deriving P (ri |p1:i−1,h0), i.e., the conditional
probability for a road segment ri to be traveled on, given that the previous i − 1 segments have
been passed by, as follows:

P (ri = eu |p1:i−1,h0) = P (ri = eu |hi ) = exp (Wru · hi )∑
ev ∈E exp (Wrv · hi · leu ,ev )

where leu ,ev =

{
1, eu .s = ev .s
0, otherwise

.

HereWr is the projection matrix that projects hi from the hidden state space into the space of
all distinct road segments,Wru denotes the uth row ofWr , and leu ,ev is the embedded topological
constraint, which indicates whether eu and ev follow the same road segment ri−1 in the road net-
work. Constraining the transition probabilities of road segments not following ri−1 to zero allows
the model to focus on updating only the weights of those road segments following ri−1. Moreover,
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Fig. 10. Relevance between road segments.

the prediction of the travel time ti for road segment ri , denoted by ft ime (p1:i−1,h0), is derived as
follows:

ft ime (p1:i−1,h0) = ft ime (hi ) = FFN (hi ),

where FFN (x ) =
(
Wt2 · (Wt1 · x + b1) + b2

)
is a simple fully connected feed-forward network for

travel time prediction as a regression task, which consists of one hidden layer with linear trans-

formations. In FFN (x ),Wt1 is a (
d
2 × d) matrix,Wt2 is a (1 × d

2 ) matrix and d is the dimensionality
of h0.

4.3.2 Optimization Objective. Using a training set Dp containing all ST-Seqs, in the form of
p = {(r0, t0), . . . , (r |p |, t |p | )}, Traj2Vec is trained by the backpropagation training algorithm in con-
junction with gradient descent. It goes backwards to adjust the parameters of Traj2Vec for each
entry in Dp , attempting to minimize the loss L, which is a combination of Lroadp (p) and Lt imep (p)
for each training data entry p in Dp , where Lroadp (p) and Lt imep (p) are the losses for road seg-
ments decoding and travel time decoding, respectively. To ease the computation in the optimiza-
tion process, weminimize logLroadp (p) and logLt imep (p) instead of Lroadp (p) and Lt imep (p). In the
following, we first derive logLroadp (p) and logLt imep (p) based on P (ri |p1:i−1,h0) (the conditional
probability for traveling on road segment ri ) and ft ime (p1:i−1,h0) (the prediction of its travel time
ti ),

logLroadp (p) = − log
|p |∏
i=1

P (ri = eu |p1:i−1,h0) = −
|p |∑
i=1

log
exp (Wru · hi )∑

ev ∈E exp (Wrv · hi · leu ,ev )

logLt imep (p) = 2

|p |∑
i=1

log{ti − ft ime (p1:i−1,h0)}.

Note that Lroadp (p) above does not capture the relevance between road segments very well.
Actually, Lroadp (p) penalizes themisses in predicting the output road segments with equal weights,
without considering the relevance between a predicted road segment and the target road segment
(the observed road segment in the trajectory). Intuitively, a predicted road segment that is more
relevant to the target road segment, e.g., in terms of their Euclidean distance or cosine similarity
of their road segment embeddings, is more accurate than those that are less relevant. For example,
in Figure 10, if the target road segment is e1, the loss function penalizes the predictions e2 and
e3 equally (which is not a good penalty scheme as e2 is more relevant to e1 than e3 to e1). In this
case, it is more acceptable for the decoder to output e2 instead of e3. We address this issue by
proposing a road segment relevance-aware loss function to assign a weight for each road segment
ei in decoding of a target road segment et . Our idea is to assign the weight of road segment ei
proportional to the relevance (e.g., measured by Euclidean distance or cosine similarity between
ei and et ’s embeddings). As such, the more relevant road segments to et have the less weights. The
road segment relevance-aware loss function logL′

roadp
(p) (based on Euclidean distance) is given
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Table 1. Statistics of Trajectory Datasets

Name #Trajectories Avg. #Points Avg. time gap
Porto 1,233,766 60.20 15.00 sec.
Tokyo 273,046 31.76 14.37 sec.

as:

logL′roadp (p) = −
|p |∑
i=1

log
exp (Wru · hi )∑

ev ∈E exp (Wrv · hi · leu ,ev ·weu ,ev )

= −
|p |∑
i=1

{
Wru · hi − log

∑
ev ∈E

exp (Wrv · hi · leu ,ev ·weu ,ev )
}
,

whereweu ,ev =
|vec (eu )−vec (ev ) |2

γ
is the weight for ev when the target for decoding is eu , |vec (eu ) −

vec (ev ) |2 denotes the Euclidean distance between the embeddings of eu and ev and γ is a road
similarity scale parameter. Finally, the loss function L is derived as follows:

L =
∑
p∈Dp

{
β logL′roadp (p) + (1 − β ) logLt imep (p)

}
,

where β is for weighing logL′
roadp

(p) and logLt imep (p).

4.4 Fine-tuning Road Segment Embeddings

Based on the idea of fine-tuning in transfer learning [41], the road segment embeddings (learned
in Phase 2) not only can be precomputed for replacing each ri (as a fixed feature vector) in an
ST-Seq for trajectory representation learning. They can also be further fine-tuned through the
process of trajectory representation learning to obtain better trajectory embeddings. More specif-
ically, the precomputed road segment embeddings obtained in Phase 2 can be used as the initial
latent vectors for ri ’s of ST-Seqs in Phase 3. Then, while learning the trajectory embeddings, the
latent vector of each ri is further updated to optimize the loss function of trajectory represen-
tation learning. We show later that employing this fine-tuning in Phase 3 slightly improves the
performance.

5 EXPERIMENTS

In this section, we conduct an empirical evaluation on Trembr using two real-world trajectory
datasets. The experimentation also examines several models for trajectory representation learn-
ing, including two baselines and two existing works for comparison. To demonstrate the generality
of embeddings learned by Trembr and other models, trajectory similarity measure, travel time pre-

diction, and destination prediction, are adopted as benchmark tasks.

5.1 Datasets, Models, and Evaluation Platform

The following describes the real-world trajectory datasets used in the evaluation. Some statistics
of the trajectories extracted from these datasets are summarized in Table 1.
Porto taxi data, made available for the Taxi Service Trajectory Prediction Challenge@

ECML/PKDD 2015 [4], contains 1.7 million taxi trajectories of 442 taxis running in Porto,
Portugal over 19 months. Each taxi reports its location every 15 s. We remove trajectories with
less than 10 GPS sample points, which yields 1.23 million trajectories.
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Tokyo OpenPFLOW data have collected 78 million GPS sample points from 617,040 users in
Tokyo walking or taking different vehicles, such as bike, car, and train, for 1 day [38]. We extract
the sequences of GPS points by users taking bike or car and then segment them into trajectories
based on a 45-s time gap. Finally, we remove trajectories with less than 10 GPS sample points to
yield 0.27 million trajectories.
The trajectory representation learning models evaluated for comparison includes two baselines

and two state-of-the-art methods. We also investigate different ways of exploiting Trembr to gen-
erate embeddings, i.e., by feeding trajectories in forward or backward (reversed order) directions
and their combinations. The compared models are summarized below.
Raw Trajectory uses raw trajectories (sequences of GPS samples without being transformed

as road segment sequences) as inputs for the seq2seq model.
Road Segments uses transformed sequences of road segments (no embeddings) as inputs for

the seq2seq model.
trajectory2vec [44] transforms trajectories as sequences of aggregated moving features as in-

puts for the seq2seq model.
t2vec [18] transforms trajectories as sequences of cells on the map as inputs for the t2vec model

(which is an RNN-based encoder–decoder with spatial-aware loss function).
Trembrf and Trembrb . ST-Seqs (with road segment embeddings) feed in forward and back-

ward directions as inputs for the proposed Trembr framework, denoted as Trembrf and Trembrb ,
respectively.2

Trembrf +b . A hybrid of Trembrf and Trembrb by concatenating the (d/2-dimensional) embed-
dings learned by Trembrf and Trembrb into a d-dimensional embedding.

Trembr, implemented in C (Road2Vec) and python with Tensorflow (Traj2Vec), is trained using
a GeForce GTX 1080 GPU. All experiments are run on the Ubuntu 18.04 operating system with an
Intel Core i5-8400 CPU.

5.2 Trajectory Similarity Measure

In this section, we evaluate the models by the task of using embeddings to measure trajectory
similarity. We first introduce the experimental setup, including the evaluation methodology for
trajectory similarity, the preparation of datasets, and the default settings of parameters in the
compared models. Then, we perform sensitivity tests on parameters of Trembr to determine the
default settings. Next, we examine several issues in the Trembr framework, including the window
size in Road2Vec, embedding network topology in Traj2Vec and road segment relevance in the loss
function in Traj2Vec. Finally, we show the experimental results and some case study.

5.2.1 Experimental Setup. The measure of trajectory similarity is essential in many trajec-
tory mining tasks and applications. Due to the lack of ground truth for evaluation of trajectory
similarity, two recent studies [32, 36] propose to exploit the idea of self-similarity that exists in
sub-trajectories of the same trajectory for empirical evaluation. Inspired by this idea and the ex-
periment adopted in Reference [18], we design an experiment to evaluate the effectiveness of us-
ing trajectory embeddings (generated by various models) for similarity measure.3 In specific, for
each trajectoryT in a given trajectory dataset D, we take odd-numbered and even-numbered GPS
sample points from T to create two interleaving sub-trajectories, Ta and Tb . Thus, we have two
datasets, Da = Ta and Db = Tb . Next, we randomly choose 10,000 trajectories from Da and their
corresponding trajectories in Db to form test datasets, denoted asQa andQb , respectively. We use

2We have actually tried other alternative ways to apply Trembr, e.g., using forward trajectories for encoding and backward

trajectories for decoding in Traj2Vec, but Trembrf and Trembrb perform better.
3Here the trajectory similarity is calculated by Euclidean distance between embeddings of two trajectories.
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Fig. 11. Parameter sensitivity – Trembrf +b .

Da to train the models that in turn are used to infer the embeddings of all the trajectories in Qa

andQb . Finally, for each trajectoryTa ∈ Qa , we rank trajectories inQb in terms of their Euclidean
distance toTa in the space of trajectory embeddings. Ideally, the correspondingTb shall be ranked
at the top, since Ta and Tb are created from the same original trajectory. We use mean rank as the
metric for the task of trajectory similarity measure.
Regarding default parameter settings, the dimensionality of trajectory embeddings for all mod-

els is set to 256, which usually achieves the best or converged results. For Trembr, in Road2Vec, the
dimensionality of road segment embeddings are set to 128. The window size adopts Moving time
with 60 s, the number of negative samples per positive sample is set to 5 and theα for weighting the
loss is set to 0.9. In Traj2Vec, the β for weighting the loss is set to 0.9, the maximum length of input
ST-Seqs for training is determined by data while it can cover more than 90% ST-Seqs, (e.g., 150 for
the Porto dataset and 100 for the Tokyo dataset) and the road segment embeddings are fine-tuned
in Phase 3 while learning trajectory embeddings. For the two baselines, Raw Trajectory and Raw
Segments, we adopt the same structure of encoder–decoder used in Trembr, where the encoder
and decoder are both a single layer LSTM model. For trajectory2vec and t2vec, we tune the best
parameter settings, e.g., the cell size of t2vec is 100 m. The initial learning rate for all models is set
to 0.0001 and we use Adam for optimization. To obtain converged results, the number of iterations
for model training varies for individual models and different datasets.

5.2.2 Parameters Settings in Trembr. Here we examine the impact of parameter settings in
Trembr on the result of trajectory representation learning and the performance of its applica-
tions. We only show the results of Trembrf +b , because Trembrf and Trembrb have a similar trend
with Trembrf +b . To test the parameter sensitivity of Trembr, we vary the values of important
parameters to observe how the mean rank changes, as shown in Figure 11.
Dimensionality of road segment embeddings. First, Figure 11(a) shows that setting the di-

mensionality of road segment embeddings at 128 for both Porto and Tokyo datasets achieves the
best performance. Generally speaking, a small dimensionality does not sufficiently capture the
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information embedded in the relationships between road segments, but a large dimensionality
may lead to noises and cause overfitting.
Window size in Road2Vec. As shown in Figure 11(b), the performance does not change much

when the window size of Moving time in Road2Vec is set at between 45 s to 75 s. Thus, setting
the window size of Moving time to 60 s is a good choice.
Dimensionality of trajectory embeddings. Figure 11(c) shows that setting the dimension-

ality of trajectory embeddings at 256 is reasonable. As mentioned previously, setting a small di-
mensionality does not sufficiently capture the information embedded in trajectories. Again, a large
dimensionality may lead to noises and cause overfitting. For both Porto and Tokyo datasets, in-
creasing the dimensionality from 64 to 256 significantly improves the performance (57.7% and
62.6%, respectively). While increasing dimensionality up to 512 continues to improve the perfor-
mance, their improvements are relatively small (4.5% and 19.0%, respectively).
Number of iterations in Traj2Vec. In Traj2Vec, while the default batch size of each iteration

is 64 (limited by the memory of GPU), Figure 11(d) suggests that when the number of iterations is
increased (resulting inmore data for training), the performance continues to improve and converge
when it is set to 6,000 to 10,000.
Based on these results, in Trembr, the dimensionality of road segment embeddings and trajectory

embeddings is set to 128 and 256, respectively. The window size of Moving time in Road2Vec is
set to 60 s. The number of iterations for training in Traj2Vec is set to 6,000 for Porto dataset and
8,000 to Tokyo dataset while the batch size is set to 64. There are several additional parameters in
Trembr that are empirically decided in the process of tuning the above parameters. Due to the lack
of space, we skip the empirical details in tuning those parameters. Note that the α for weighting
the loss in Road2Vec is set to 0.9, indicating that the co-occurrence relationship between road
segments is more important than the same road type relationship.

5.2.3 Study of Unique Issues in Trembr. As discussed, several unique issues arise in the design
of Trembr. In this section, we examine the following issues: (i) the window size for data prepara-
tion in Road2Vec, (ii) whether it is helpful to embed the network topology constraint for learning
in Traj2Vec, and (iii) whether it is helpful to embed the road segment relevance for training in
Traj2Vec. We perform experiments to compare alternative choices in these issues and justify our
decisions.
Regarding the issue of how to define the window size for data preparation in Road2Vec, we

compare three different approaches: (1) within-k-hop in the road network, where k is set to 5,
(2) Moving distance, which is set to 500 m, and (3) Moving time, which is set to 60 s, while the
number of negative samples per positive sample in Road2Vec is 5. We also show one additional ap-
proach (4) Word2Vec, which simply applies the Word2vec model [10, 25] (i.e., it uses within-k-hop
to define the window size and only considers the frequent co-occurrence relationship among road
segments for learning), where k is also set to 5. These values are empirically decided in the process
of parameter tuning shown in the previous section. Figure 12(a) shows that using Moving time to
define the window size is better than using the other two in both datasets (improved about 23.0%
to 38.5%), because it captures the moving behaviors of mobile users, i.e., two road segments passed
by within a short time are relevant. In contrast, both within-k-hop and Moving distance fail
to capture the moving behaviors of mobile users effectively. Additionally, these three approaches
all outperform Word2vec, which suggests that considering the same road type relationship among
road segments helps further trajectory representation learning.
Regarding the issue of whether it is helpful to embed the network topology constraint and em-

bed the road segment relevance in Traj2Vec for trajectory representation learning, we compare
three settings: (1) the Best setting embeds both the network topology constraint and the road seg-
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Fig. 12. Comparison of approaches to issues.

Table 2. Performance of Trajectory Similarity Measure

Dataset Porto Tokyo

r 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Raw Trajectory 256.87 1266.39 1907.45 2636.31 382.13 1501.75 2119.57 2666.31
Road Segment 163.31 340.47 1392.99 2338.04 328.1 775.81 1191.41 1585.88
trajectory2vec 367.54 1588.32 2350.23 x 447.01 1192.66 1882.23 x

t2vec 301.83 533.97 1023.42 1924.82 391.49 813.92 1074.74 1395.18
Trembrf 15.07 246.21 679.73 1651.71 24.09 294.11 657.99 1176.43
Trembrb 11.12 194.58 658.05 1514.53 23.49 290.34 647.65 1159.13
Trembrf +b 6.51 192.77 523.96 1201.5 20.09 281.48 616.58 1009.77

ment relevance in the loss function of Traj2Vec, and fine-tunes the road segment embeddings; (2)
the No Network Constraint does not consider the network topology constraint in Traj2Vec;
(3) the No Road Relevance does not consider the road segment relevance in Traj2Vec; and
(4) the No Fine-tuning does not fine-tune the road segment embeddings while learning trajec-
tory embeddings. Figure 12(b) shows that Best outperforms No Network Constraint about 9.2%
to 13.5%, outperforms No Road Relevance about 3.9% to 8.6% and outperforms No Fine-tuning
about 4.7% to 7.2%. This suggests that considering the network topology constraint and the road
segment relevance in Traj2Vec are both necessary, and the fine-tuning also helps to learn better
trajectory embeddings.

5.2.4 Evaluation of Models. The performance of trajectory similarity measure using trajectory
embeddings obtained by the evaluated models is summarized in Table 2. Here, we also study the
impact of low and non-uniform sampling rate by down-sampling GPS sample points of trajectories.
We control the dropping rate r from 0.0 to 0.6 to randomly drop GPS sample points of trajectories
in the training dataset Da and test datasets Qa and Qb .

4 One existing work, trajectory2vec, fails
when r is 0.6, because many trajectories have too few sample points to get aggregated moving
features. As shown, the Trembr variants outperform all the baselines and state-of-the-art models.
We make the following observations from the comparison.
Transforming trajectories into ST-Seqs is useful. Comparing with Raw Trajectory, trajec-

tory2vec and t2vec (which use the raw GPS sample points, aggregated moving features and cells
in the map, respectively), the models using ST-Seqs achieve better performance under various r ,
because transforming trajectories into ST-Seqs is useful for handling noisy sample points and the

4With r = 0.0 the original Da , Qa , and Qb are used (without dropping sample points).
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Fig. 13. Comparison of similar trajectories.

issue of low and non-uniform sample rate. Moreover, ST-Seqs provide both spatial and tempo-
ral properties in trajectories for further trajectory representation learning, which leads Trembr
outperform trjactory2vec and t2vec while trajectory2vec misses the spatial properties and t2vec
misses the temporal properties. Note that in our evaluation the t2vec shows a much worse per-
formance than its reported result [18]. This may be due to the use of much larger datasets (e.g.,
10× for Porto data) in our evaluation, which is consistent with the worsen performance of t2vec
observed in Reference [18], when the size of dataset is increasing.
Replacing road segment IDs by road segment embeddings is useful. Comparing with

Road Segment and Trembr variants (which all use the transformed ST-Seqs with road segment
embeddings), the performance improvement of Trembr variants over Road Segment is clear and
impressive. It shows that replacing road segment IDs by their embeddings is critical to the suc-
cess of Trembr, because the road segment embeddings capture the additional information of co-
occurrence in trajectories and the same road type in road network.
Combining forward and backward information of trajectories is helpful.Among Trembr

variants, Trembrf and Trembrb have close performance, while Trembrf +b outperforms them,
which indicates that using directional information, forward and backward, of trajectories is help-
ful. To further investigate the reasons, we perform a search for similar trajectories to a query
trajectory Ta . Figure 13(a), Figure 13(b), and Figure 1 show the top three most similar trajectories
to Ta (marked as “query”)-based on trajectory embeddings obtained by Trembrf , Trembrb , and
Trembrf +b , respectively. Here, we do not show the ground truth, i.e., the corresponding trajectory
Tb of Ta , for better observation, but note that Tb is ranked at the top in this case. Figure 13(a)
shows that, for Trembrf , the top 3 most similar trajectories have the sources (marked by solid cir-
cles) close to each other and tend to have the first halves of the trajectories similar with the query.
In other words, the learned trajectory embeddings of Trembrf mainly capture the first halves of the
trajectories but miss the information of the remaining trajectories. However, Figure 13(b) shows
that, for Trembrb , the top three similar trajectories have the destinations (marked by hollow cir-
cles) close to each other and tend to have the second halves of the trajectories similar with the
query, i.e., the learned trajectory embeddings of Trembrb miss the information of the first halves
of the trajectories. Finally, Figure 1 shows that the top three similar trajectories of Trembrf +b have
both sources and destinations close to that of the query trajectory and have trajectories similar as a
whole, because Trembrf +b is able to utilize both forward and backward information of trajectories.
The issue of low sample rate is challenging. Although the mean rank of all approaches

increases remarkably when the dropping rate r is increased, the Trembr variants consistently out-
perform the other methods significantly. However, one potential issue is that the Trembr variants
depend on road network matching to transform raw trajectories to ST-Seqs. When the dropping
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Table 3. Performance of Travel Time Prediction

Dataset Porto Tokyo

r 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Raw Trajectory 278.03 293.85 318.05 319.99 141.79 144.19 148.54 169.49
Road Segment 211.04 211.69 226.27 232.32 129.18 131.96 134.59 134.6
trajectory2vec 223.56 231.77 259.9 x 156.56 157.89 157.81 x

t2vec 300.15 300.73 301.56 305.14 198.67 200.41 202.57 202.79
Trembrf 175.5 179.31 191.61 199.64 101.32 102.2 103.42 111.31
Trembrb 177.4 183.96 192.78 203.62 102.02 102.67 103.18 107.01
Trembrf +b 171.97 175.12 179.01 189.43 91.78 92.56 92.76 96.46

rate is large, each pair of test trajectories, Ta and Tb , have interleaving but sparse sample points,
leading to potentially different ST-Seqs and thus resulting in different trajectory embeddings.

5.3 Travel Time Prediction

In this section, we demonstrate that the trajectory embeddings learned by Trembr can be used
effectively for another application, travel time prediction. In the following, we first introduce the
experimental setup including the experimental flow of travel time prediction and metrics for eval-
uation. Then, we show the experimental results of Trembr, in comparison with other models.

5.3.1 Experimental Setup. Travel time prediction is a regression task to predict the travel time
of a trajectory. Given a trajectory dataset D, we randomly select 10,000 trajectories to form a
test dataset Q . We use D to train the representation models and infer the embeddings for each
trajectory in Q . Then, we apply a linear regression model, which uses the trajectory embeddings
of Q learned by the various trajectory representation learning models under comparison as input
feature vectors, with fivefold cross validation. We use mean absolute error (MAE) between the
predicted result and the ground truth (in seconds) as the metric for travel time prediction.
Regarding the parameter settings, we use the same parameter values used in the experiments for

trajectory similarity measure. In addition, for fair comparison, in Trembr variants, we do not use
any time information that may reflect the prediction target. Thus, we remove travel time while en-
coding and decoding in Traj2Vec. Moreover, we use within-5-hop as the window size in Road2Vec
rather than use Moving time.

5.3.2 Evaluation of Models. The performance of travel time prediction by all evaluated models
is summarized in Table 3. As in the experiments of trajectory similarity measure, we study the
impact of low and uniform sampling rate by randomly dropping some GPS sample points of tra-
jectories. We vary the dropping rate r from 0.0 to 0.6 and randomly drop GPS sample points of
trajectories in the training dataset D and test dataset Q based on the dropping rate. Like before,
trajectory2vec fails when r is 0.6 as some trajectories have too few sample points to get aggregated
moving features. As shown, Trembr variants outperform all the baselines and state-of-the-art mod-
els. We have the following observations from the comparison.
ST-Seqs transformation and road segment embeddings are useful.Among all approaches,

Trembr variants achieve significantly better performance than Raw Trajectory, trajectory2vec and
t2vec under various settings of r . It shows that transforming trajectories into ST-Seqs is useful,
achieving better performance than using raw GPS sample points, aggregated moving features,
or grid cells in the map, because transforming trajectories into ST-Seqs based on road network
matching effectively handles noisy sample points and the issue of low and non-uniform sample
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Table 4. Performance of Destination Prediction

Dataset Porto Tokyo

r 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Raw Trajectory 2.45 2.56 2.67 3.09 3.57 3.75 3.95 4.51
Road Segment 1.63 1.67 1.73 1.81 3.05 3.23 3.31 3.49
trajectory2vec 2.25 2.37 3.16 x 4.41 4.89 5.14 x

t2vec 1.87 1.88 2.03 2.33 3.28 3.45 3.71 3.89
Trembrf 1.05 1.06 1.07 1.12 2.51 2.63 2.69 2.89
Trembrb 0.99 1.01 1.03 1.1 2.19 2.3 2.45 2.67
Trembrf +b 0.89 0.94 0.98 1.04 1.98 2.18 2.33 2.51

rate. However, Trembr variants outperform Road Segment. It shows that replacing road segment
IDs by their embeddings is useful, because the road segment embeddings capture relationships of
co-occurrence in trajectories and sample road type in the road network, which better present the
moving behaviors of mobile users and properties of the road network.
Trembr variants have similar performance.Among Trembr variants, Trembrf and Trembrb

achieve close performance, while Trembrf +b is slightly better than them (above 2.1% to 5.4% by
varying r ). One possible reason is that, although in experiments of trajectory similarity measure,
Trembrf +b is able to capture the whole trajectories by concatenating the embeddings learned by
Trembrf and Trembrb , there could still be better ways to encode the whole trajectories into em-
beddings instead of concatenation. However, as shown in Figure 1, although the top similar results
are quite matched with the query in terms of the moving paths on the map, their sources and desti-
nations still have some gaps, which lead to different travel time. In other words, trajectories having
similar embeddings may not perfectly reflect that they have similar travel time, although Trembr
variants already outperform other approaches.

5.4 Destination Prediction

In this section, we demonstrate the learned trajectory embeddings can be used effectively for the
third application, destination prediction. We first introduce the experimental setup and metrics for
evaluation. Then, we show the experimental results of Trembr, in comparison with other models.

5.4.1 Experimental Setup. Destination prediction, which is also a regression task, aims to pre-
dict the latitude and longitude of the destination in each trajectory. In specific, given a trajectory
dataset D, for each trajectoryT ∈ D, we create a sub-trajectory by taking GPS sample points from
the first four-fifths of the trajectory, denoted asT ′, to form a dataset D ′. Then, we randomly select
10,000 trajectories from D ′ to form a test datasetQ ′. We use D ′ to train the representation models
and infer the embeddings for each trajectory in Q ′. Then, We train two linear regression models,
which use the trajectory embeddings inQ ′ learned by the trajectory representation models under
comparison as input feature vectors, to predict the latitude and longitude of the destination in
each trajectory inQ ′, with fivefold cross validation. We calculatemean absolute error (MAE) of the
geographic distance between the predicted result and the destination in kilometers as the metric
for destination prediction. Regarding default settings, we use the same parameter values used in
trajectory similarity measure experiments.

5.4.2 Evaluation of Models. The performance of travel destination by all evaluated models is
summarized in Table 4. We also study the impact of low and uniform sampling rate by randomly
dropping some GPS sample points of trajectories in the training dataset D ′ and test dataset Q ′
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based on the dropping rate r varied from 0.0 to 0.6. Again, trajectory2vec fails when r is 0.6, be-
cause some trajectories have too few sample points to get aggregated moving features. As shown,
Trembr variants outperform all the baselines and state-of-the-art models. We have the following
observations from the comparison.
ST-Seqs transformation and road segment embeddings are useful.Again, Trembr variants

achieve significantly better performance than other approaches under various settings of r . More-
over, it demonstrates that transforming trajectories into ST-Seqs based on road network matching
and replacing road segment IDs by their embeddings learned in Road2Vec are both useful.
The second-half information of trajectories is more discriminative for destination

prediction than the first-half one. Compared with Trembrf , Trembrb has better performance
(about 5% while r is 0.0), which shows that the second-half information of trajectories is more ef-
fective for destination prediction although Trembrf still achieve impressively better performance
than other approaches. Finally, combining both-half the first and second-half information of tra-
jectories, Trembrf +b further improves the performance.

6 CONCLUSIONS

This study focuses on representation learning of trajectories. Prior works fail to capture both the
spatial and temporal properties inherent in trajectories and do not consider the underlying road
networks even though most of the trajectory datasets are generated by capturing movement of
mobile users on roads. To fill in this gap, we propose Trembr, a novel trajectory representation
learning framework. In this framework, we design a novel RNN-based encoder–decoder model,
Traj2Vec, to encode the spatial and temporal properties in trajectories into trajectory embeddings
while constraining the learning process by exploiting underlying road networks. Moreover, we
design a new neural network–based model, Road2Vec, to learn road segment embeddings in road
networks that capture various relationships amongst road segments to facilitate the trajectory rep-
resentation learning. Empirically, we demonstrate that the proposed Trembr framework is able to
automatically learn embeddings for trajectory data to support a variety of trajectory applications,
including trajectory similarity measure, travel time prediction and destination prediction in mul-
tiple real-world trajectory datasets. Experimental results show that Trembr soundly outperforms
all the compared models under various settings.
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